Product Summary (Typ @V ${ }_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

$\mathbf{B V}_{\text {DSs }}$	$\mathbf{R}_{\text {DS(}}(\mathbf{N})$	$\mathbf{Q}_{\mathbf{g}}$	$\mathbf{Q}_{\mathbf{g d}}$	$\mathbf{I D}$
-12 V	$65 \mathrm{~m} \Omega$	9 nC	2.4 nC	-3.2 A

Description and Applications

This new generation MOSFET is designed to minimize the onstate resistance $\left(R_{\mathrm{DS}(\mathrm{ON})}\right)$ and yet maintain superior switching performance, making it ideal for high-efficiency power management applications. It is a high-performance MOSFET in ultra-small $0.8 \mathrm{~mm} x$ 0.8 mm package.

Features and Benefits

- Built-in G-S Protection Diode against ESD 2kV HBM
- Ultra Small $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ Package
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: X2-WLB0808-4
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections: See Diagram
- UBM Opening: $203 \mu \mathrm{~m}$
- Portable Applications
- Load Switch
- Power Management Functions

Top View

Ordering Information (Note 4)

Part Number	Case	Packaging
DMP1100UCB4-7	X2-WLB0808-4	$3,000 /$ Tape \& Reel

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) \& 2011/65/EU (RoHS 2) compliant.
2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

9W = Product Type Marking Code
YM = Date Code Marking
Y or $\bar{Y}=$ Year (ex: $D=2016$)
M or $\overline{\mathrm{M}}=$ Month (ex: $9=$ September)

Year	2016		2017	2018		2019		2020		2021	2022	
Code	D		E		F	G		H		1	J	
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	O	N	D

Maximum Ratings

Characteristic		Symbol	Value	Unit
Drain-Source Voltage		$V_{\text {DSS }}$	-12	V
Gate-Source Voltage		$\mathrm{V}_{\text {GSS }}$	± 8	V
Continuous Source Current @ V ${ }_{\text {GS }}=-4.5 \mathrm{~V}$ (Note 5)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	ID	$\begin{aligned} & \hline-2.5 \\ & -2.0 \\ & \hline \end{aligned}$	A
Continuous Source Current @ V ${ }_{\text {GS }}=-4.5 \mathrm{~V}$ (Note 6)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	ID	$\begin{aligned} & \hline-3.2 \\ & -2.6 \end{aligned}$	A
Pulsed Drain Current (Pulse Duration 10 $\mu \mathrm{s}$, Duty Cycle $\leq 1 \%$)		IDM	-13	A
Continuous Source-Drain Diode Current		Is	-1.2	A

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Total Power Dissipation (Note 5)	P_{D}	0.67	W
Thermal Resistance, Junction to Ambient (Note 5)	$\mathrm{R}_{\theta \mathrm{JA}}$	187	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Power Dissipation (Note 6)	P_{D}	1.1	$\mathrm{~W}^{\prime}$
Thermal Resistance, Junction to Ambient (Note 6)	$\mathrm{R}_{\theta \mathrm{JA}}$	117	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}, \mathrm{T}} \mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($@ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
OFF CHARACTERISTICS (Note 7)						
Drain-Source Breakdown Voltage	BV ${ }_{\text {DSs }}$	-12	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$
Zero Gate Voltage Drain Current	IdSs	-	-	-1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=-12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Gate-Body Leakage	IGSS	-	-	± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{GS}}= \pm 8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
ON CHARACTERISTICS (Note 7)						
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$	-0.35	-0.55	-0.8	V	$\mathrm{V}_{\text {DS }}=\mathrm{V}_{\text {GS }}, \mathrm{ID}=-250 \mu \mathrm{~A}$
Static Drain-Source On-Resistance	RDs(ON)	-	$\begin{gathered} 65 \\ 80 \\ 90 \\ 115 \\ 135 \\ 150 \end{gathered}$	$\begin{gathered} 83 \\ 96 \\ 150 \\ 170 \\ 300 \\ 400 \end{gathered}$	$\mathrm{m} \Omega$	$\begin{aligned} & V_{G S}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3 \mathrm{~A} \\ & \mathrm{~V}_{G S}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~A} \\ & \mathrm{~V}_{G S}=-1.8 \mathrm{I}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-1.5 \mathrm{I}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-1.4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=-1.3 \mathrm{I}, \mathrm{I}_{\mathrm{t}}=-1 \mathrm{~A} \end{aligned}$
Forward Transfer Admittance	\| Y_{fs} \|	-	6.5	-	S	$\mathrm{V}_{\mathrm{DS}}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.5 \mathrm{~A}$
Body Diode Forward Voltage	$\mathrm{V}_{\text {SD }}$	-	-0.7	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.5 \mathrm{~A}$,
DYNAMIC CHARACTERISTICS (Note 8)						
Input Capacitance	$\mathrm{C}_{\text {iss }}$	-	680	820	pF	$\begin{aligned} & V_{D S}=-6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
Output Capacitance	Coss	-	220	290	pF	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$	-	205	280	pF	
Gate Resistance	R_{g}	-	11.2	17	Ω	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Total Gate Charge	Q_{g}	-	9.0	14	nC	$\begin{aligned} & V_{G S}=-4.5 \mathrm{~V}, V_{D S}=-6 \mathrm{~V}, \\ & \mathrm{ID}_{\mathrm{D}}=-2 \mathrm{~A} \end{aligned}$
Gate-Source Charge	Q_{gs}	-	1.0	-	nC	
Gate-Drain Charge	Q_{gd}	-	2.6	-	nC	
Turn-On Delay Time	$\mathrm{t}_{\mathrm{D}(\mathrm{ON})}$	-	4.4	9	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GEN}}=-4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=1 \Omega, \mathrm{R}_{\mathrm{L}}=3 \Omega \end{aligned}$
Turn-On Rise Time	t_{R}	-	10.1	-	ns	
Turn-Off Delay Time	$\mathrm{t}_{\text {(OFFF) }}$	-	22	33	ns	
Turn-Off Fall Time	t_{F}	-	20	-	ns	

Notes: \quad. Device mounted on FR-4 substrate PC board, 2 oz copper, with minimum recommended pad layout.
6. Device mounted on FR-4 substrate PC board, 2 oz copper, with 1 inch square copper plate.
7. Short duration pulse test used to minimize self-heating effect.

DMP1100UCB4

Electrical Characteristics $\left(\mathrm{C}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$.)

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
ON CHARACTERISTICS ((Note 7,Note 8)						
Static Drain-Source On-Resistance	RDS(ON)	-	62	83		$\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3 \mathrm{~A}$
			78	96		$V_{G S}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~A}$
			88	150		$V_{G S}=-1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}$
			112	170	$\mathrm{m} \Omega$	$\mathrm{V}_{\mathrm{GS}}=-1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}$
			130 150	300 400		$\mathrm{V}_{\mathrm{GS}}=-1.4 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=-1 \mathrm{~A}$
						$\mathrm{V}_{\mathrm{GS}}=-1.3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A}$

Electrical Characteristics $\left(@ T_{\mathrm{A}}=+65^{\circ} \mathrm{C}\right.$.)

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition
ON CHARACTERISTICS (Note 7,Note 8)						
Static Drain-Source On-Resistance	RDs(ON)	-	$\begin{gathered} 73 \\ 89 \\ 107 \\ 127 \\ 141 \\ 163 \end{gathered}$	$\begin{gathered} 93 \\ 118 \\ 185 \\ 195 \\ 300 \\ 400 \end{gathered}$	$\mathrm{m} \Omega$	$\begin{aligned} & \mathrm{V}_{\text {GS }}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3 \mathrm{~A} \\ & \mathrm{~V}_{\text {GS }}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-2 \mathrm{~A} \\ & \mathrm{~V}_{\text {GS }}=-1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \\ & \mathrm{~V}_{\text {GS }}=-1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \\ & \mathrm{~V}_{\text {GS }}=-1.4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \\ & \mathrm{~V}_{\text {GS }}=-1.3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \end{aligned}$

Note: 8. Guaranteed by design. Not subject to production testing.

DMP1100UCB4

Figure 1. Typical Output Characteristic

Figure 3. Typical On-Resistance vs. Drain Current and Gate Voltage

T_{J}, JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)
Figure 5. On-Resistance Variation with Junction Temperature

Figure 2. Typical Transfer Characteristic

Figure 4. Typical On-Resistance vs. Drain Current and Junction Temperature

T_{J}, JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
Figure 6. On-Resistance Variation with Junction
Temperature

DMP1100UCB4

Figure 7. Gate Threshold Variation vs. Junction Temperature

$\mathrm{V}_{\text {DS }}$, DRAIN-SOURCE VOLTAGE (V)
Figure 11. SOA, Safe Operation Area

Figure 8. Diode Forward Voltage vs. Current

Figure 10. Gate Charge

Figure 12. Single Pulse Maximum Power Dissipation

DMP1100UCB4

Figure 13. Transient Thermal Resistance

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.
X2-WLB0808-4

X2-WLB0808-4			
Dim	Min	Max	Typ
A	--	0.400	0.375
A2	--	--	0.180
b	0.1971	0.2409	0.219
D	0.790	0.820	0.816
E	0.790	0.820	0.816
e	--	--	0.400
All Dimensions in $\mathbf{~ m m}$			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

X2-WLB0808-4

Dimensions	Value (in mm)
C	0.400
D	0.219

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated
www.diodes.com

